2017 级测绘工程专业本科培养方案 #### 一、专业基本信息 | 英文名称 | Surveying and Mapping Engineering | | | | |------|-----------------------------------|------|------|--| | 专业代码 | 081201 | 学科门类 | 工学 | | | 学 制 | 4年 | 授予学位 | 工学学士 | | #### 二、培养目标和专业特色 #### 1.培养目标 培养具有德、智、体、美全面发展,具备数理基础和人文社科知识,掌握测绘工程基础理论、基本知识和基本技能,接受科学思维和工程实践训练,胜任国家基础测绘、城乡建设、自然资源、应急管理等领域测绘项目的设计、生产、研发及管理工作,具有较强的组织管理能力、创新意识、继续学习能力、国际视野和城市测绘特色的应用型工程技术人才。毕业后经过5年左右的工作和学习,能够达到如下目标: - (1) 掌握数学、自然科学、工程基础及先进的测绘理论与技术,胜任工程勘测、设计、施工及管理等专业技术工作; - (2) 具有良好专业素养、丰富的工程管理经验和极强工作责任心,成为测绘地理信息企事业单位中的技术负责人或技术骨干; - (3) 具有继续学习适应发展的能力,能够独立或协同承担测绘地理信息科研工作; - (4) 具有良好的团队意识、国际化视野和沟通能力,能够承担团队中的领导角色; - (5) 具有良好的思想道德修养和科学文化素养,能够承担和履行社会责任。 #### 2.专业特色 本专业依托首都建设和学校土木建筑类学科优势,培养服务首都、面向全国、依托建筑行业、服务城乡建设的专业测绘人才。适应测绘高新科技发展,融教学、科研和生产为一体,强调理论与实践密切结合,突出城市测绘特色,培养测绘新技术、新方法、新工艺的应用能力,满足城乡建设、古建筑保护、复杂结构精密测量等测绘人才需求。 #### 三、主干学科 测绘科学与技术 #### 四、主干课程 #### 1. 主干基础课程 测绘地理信息概论、工程制图与识图、C语言与数据结构、自然地理学、数字地形测量学、 地图学、CAD基础与应用、误差理论与测量平差基础、地理信息系统原理(双语)、遥感原理、 摄影测量基础。 #### 2. 主干专业课程 卫星导航定位技术、大地测量学基础、工程测量学、变形监测与灾害预报、不动产测量与管理、激光雷达测量技术与应用。 #### 五、主要实践教学环节 #### 1. 主要实验 数字地形测量学实验、卫星导航定位技术实验、摄影测量基础实验、地理信息系统原理 实验、大地测量学基础实验、工程测量学实验、变形监测实验、不动产测量与管理实验、激光 雷达测量技术实验。 #### 2. 主要实践环节 数字地形测量实习、卫星导航定位实习、遥感原理实习、摄影测量实习、地理信息系统实 习、地图学实习、控制测量实习、工程测量综合实习、空间信息综合实习、不动产测量与管理 实习、激光雷达测量实习。 #### 六、毕业学分要求 参照北京建筑大学本科学生学业修读管理规定及学士学位授予细则,修满本专业最低计划学分应达到 160 学分,其中理论课程 121 学分,实践教学环节 39 学分(含创新实践及科研训练必修 2 学分)。 #### 七、各类课程结构比例 | 5、4人外往北海6万 | | | | | | |------------|------|-------|------|--------|--| | 课程类别 | 课程属性 | 学分 | 学时 | 学分比例 | | | 通识教育课 | 必修 | 37. 5 | 600 | 23.43% | | | | 选修 | 3 | 48 | 1.88% | | | 大类基础课 | 必修 | 46 | 764 | 28.75% | | | | 选修 | 1 | 16 | 0.63% | | | 专业核心课 | 必修 | 17 | 272 | 10.63% | | | 专业方向课 | 必修 | 6 | 96 | 3.75% | | | | 选修 | 10.5 | 168 | 6.56% | | | 独立实践环节 | 必修 | 37 | 764 | 23.13% | | | | 选修 | 2 | 40 | 1.25% | | | 总计 | | 160 | 2768 | 100% | | #### 八、教学进程表 | 学期 | 教学周 | 考试 | 实践 | 学期 | 教学周 | 考试 | 实践 | |----|--------|---------|------------------|----|--------|---------|---------| | 1 | 4-19 周 | 20 周 | 1-3 周 | 2 | 1-16 周 | 17 周 | 18-20 周 | | 3 | 1-14 周 | 15-16 周 | 17-20 周 | 4 | 1-14 周 | 15-16 周 | 17-20 周 | | 5 | 1-16 周 | 19-20 周 | 17-18 周 | 6 | 1-14 周 | 15-16 周 | 17-20 周 | | 7 | 7-15 周 | 16 周 | 1-6 周
17-20 周 | 8 | 1-16 毕 | 业设计/实习 | 17 周答辩 | #### 九、毕业生应具备的知识能力及实现矩阵 | 毕业生应具备的 | 10 77 km) U V2 (-1-) | 应有人久,/甲和土埃) | |---------|-----------------------|---------------------| | 知识能力 | 相关知识领域 | 实现途径 (课程支撑) | | 1.1 能够将数学、自然
科学、工程科学的语言
工具用于测绘工程问题
的表述 | 计算思维导论、C 语言与数据结构、CAD 基础与应用、工程制图与识图、高等数学 $A(1-2)$ 、概率与数理统计 B 、普通物理 $A(1-2)$ 、物理实验 $(1-2)$ 、线性代数、土木工程概论、地图学、自然地理学、计算机图形学等。 | |---|--| | 1.2 能针对具体的测绘
对象建立数学模型并求
解 | 高等数学 A(1-2)、线性代数、数字地形测量学、地理信息系统原理(双语)、摄影测量基础、变形监测与灾害预报、大地测量学基础、误差理论与测量平差基础等。 | | 1.3 能够将相关知识和
数学模型方法用于推
演、分析测绘专业复杂
工程问题 | 计算思维导论、CAD 基础与应用、工程制 2 图与识图、线性代数、卫星导航定位技术、激光雷达测量技术与应用、计算机图形学、城市地下管线测量、工程测量学、城市空间信息学等。 | | 1.4 能够将相关知识和
数学模型方法用于测绘
专业复杂工程问题解决
方案的比较与综合 | C 语言与数据结构、概率与数理统计 B、三维地理信息技术、近景摄影测量、数字地形测量实习、地图学实习、摄影测量基础实习、空间信息综合实习、毕业设计等。 | | 2.1 能够将数学、自然
科学与工程科学的基本
理论运用到识别、分析
占表法 | 计算思维导论、C语言与数据结构、高等数学 A(1-2)、概率与数理统计 B、物理实验(1-2)、线性代数、土木工程概论、C#程序设计、地图学、地理信息系统原理(双语)、自然地理学、变形监测与灾害预报、空间分析与建模、摄影测量基础实习等。 | | 2.2 能够基于相关科学
原理和数学模型方法正
确表达复杂测绘工程问 | CAD 基础与应用、数字地形测量学、误差理论与测量平差基础、测量数据处理与程序设计大赛实训、激光雷达测量技术与应用、三维地理信息技术、城市地下管线测量、GIS 基础应用技能、工程测量学、移动道路测量技术及应用等。 | | 2.3 能够认识到解决问题有多种方案可选择,
会通过文献研究寻求可 | C语言与数据结构、科技文献检索、摄影测量基础、大地测量学基础、工程测量学、地理信息系统原理实习、不动产测量与管理实习等。 | | 2.4 能运用基本原理,
借助文献研究,分析过
程的影响因素,获得有
效结论 | 普通物理 A(1-2)、科技文献检索、卫星导航定位技术、控制测量
实习、工程测量综合实习、毕业设计、科研训练等。 | | 3.1 掌握测绘工程设计
/开发全周期、全流程的
基本设计/开发方法和
技术,了解影响设计目
标和技术方案的各种因 | 计算思维导论、CAD 基础与应用、GIS 基础应用技能、不动产测量与管理、智慧城市导论、空间分析与建模、工程测量学、摄影测量基础实习、工程测量综合实习、空间信息综合实习等。 | | 3.2 能够设计开发满足
特定测绘需求的生产流
程及系统 | C语言与数据结构、CAD基础与应用、遥感原理、地理信息系统原理(双语)、摄影测量基础、卫星导航定位技术、激光雷达测量技术与应用、工程测量学、地图设计与编绘、地图学实习、卫星导航定位实习、地理信息系统原理实习、测量数据处理与程序设计大赛实训等。 | | 3.3 能够在测绘工程解决方案设计中体现创新意识,考虑社会、健康、安全、法律、文化以及环境等因素 | 测绘地理信息概论、数字地形测量学、工程测量学、移动道路测量技术及应用、地理国情监测、创新实践(测绘技能大赛、测绘科技论文大赛)、数字地形测量实习、工程测量综合实习、创新创业类、毕业设计等。 | | | 科工的 1.对解 1.数演工 1.数专方 2.科理与 2.原确题 2.题会替 2.借程效 3./基技标素 3.特程 3.决意安学具表 2.象 3.学、程 4.学业案 1.数专方 2.原确题 2.题会替 2.借程效 3.开本术和 2.定及 3.方识全学具表 2.象 3.学、程 4.学业案 1.数专方工校将程到 基学杂 认方献决用研因 测期 将方工校将程到 基学杂 认方献决用研因 测期/解方 设需 在计宏特别 识案研方基究素 绘、开影案 计求 测中社、的程 的型 知用业 知于题合、的、 关方工 解选寻 原分获 程流方设各 发生 工现健以的程 约型,以于复 识测解 自基分 科法程 决择求 理析得 设程法计种 满产 程创康以作品问 绘求 和推杂 和绘决 然本析 学正问 问,可 ,过有 计的和目因 足流 解新、及 | | | 1 | | |-----------|--------------------------------|------------------------------------| | 4.研究:能够基 | 4.1能够运用科学原理 | 地图学、地理信息系统原理(双语)、大地测量学基础、城市地 | | 于科学原理并采 | 对复杂测绘工程问题提 | 下管线测量、工程测量学、智慧城市导论、地理国情监测、遥感 | | 用科学方法对复 | 出研究方案 | 原理实习、地图学实习、卫星导航定位实习等。 | | 杂测绘工程问题 | 4.2能够基于专业理论 | 计算思维导论、工程制图与识图、遥感原理、摄影测量基础、卫 | | 进行研究,包括 | 知识对研究方案进行设
计、论证与预测 | 星导航定位技术、工程测量综合实习等。 | | 设计实验、分析 | | C#程序设计、C 语言与数据结构、误差理论与测量平差基础、测 | | 与解释数据、并 | 4.3能够采用科学方法 | 量数据处理与程序设计、激光雷达测量技术与应用、变形监测与 | | 通过信息综合得 | 实施数据采集与分析处 | 灾害预报、工程测量学、遥感数字图像处理、近景摄影测量、卫 | | 到合理有效的结 | 理 | 星导航定位实习、测量数据处理与程序设计大赛实训、控制测量 | | 论。 | | 实习、摄影测量基础实习、激光雷达测量技术实习等。 | | | 4.4能够对实验结果进 | 科技文献检索、地图学、科技论文写作(双语)、工程测量学、 | | | 行信息综合与评判, 取 | 空间分析与建模、不动产测量与管理实习、激光雷达测量技术实 | | | 得合理有效结论 | 习、空间信息综合实习、毕业设计等。 | | 5. 使用现代工 | | 大学英语(1-2)、计算思维导论、C语言与数据结构、CAD基础 | | 具:能够针对复 | | 与应用、C#程序设计、数字地形测量学、激光雷达测量技术与应 | | 杂测绘工程问 | | 用、三维地理信息技术、计算机图形学、城市地下管线测量、GIS | | 题,开发、选择 | 5.1 能够针对复杂测绘工程问题,选择恰当的 | 基础应用技能、变形监测与灾害预报、工程测量学、不动产测量 | | 与使用恰当的测 | 现代测绘技术与仪器 | 与管理、智慧城市导论、移动道路测量技术及应用、测绘地理信 | | 绘技术、资源、 | | 息技术前沿、数字地形测量实习、遥感原理实习、地图学实习、 | | 现代测绘仪器和 | | 工程测量综合实习、不动产测量与管理实习、激光雷达测量技术 | | 信息技术,包括 | | 实习、测绘技能大赛实训、GIS 软件开发大赛实训等。 | | 对复杂测绘工程 | | 工程制图与识图、高等数学 A (1-2) 、概率与数理统计 B、数字 | | 问题的预测与模 | | 地形测量学、遥感原理、地图学、摄影测量基础、大地测量学基 | | 拟,并能够理解 | | 础、卫星导航定位技术、误差理论与测量平差基础、工程测量学、 | | 其局限性。 | 5.2 能够使用现代测绘仪器和信息技术软件完 | 变形监测与灾害预报、不动产测量与管理、遥感数字图像处理、 | | | 成测绘数据采集、数据 | 近景摄影测量、数字地形测量实习、遥感原理实习、卫星导航定 | | | 处理与精度分析 | 位实习、地理信息系统原理实习、控制测量实习、工程测量综合 | | | | 实习、不动产测量与管理实习、激光雷达测量技术实习、空间信 | | | | 息综合实习、毕业设计、测绘技能大赛实训、GIS 软件开发大赛 | | | | 实训等。 | | | 5.3 能够使用现代工 | 概率与数理统计 B、普通物理(1-2)、线性代数、科技文献检索、 | | | 具,对复杂测绘工程问题进行预测与模拟,并
理解其局限性 | 误差理论与测量平差基础、测量数据处理与程序设计、地下工程 | | | | 测量、摄影测量基础实习、毕业设计、创新实践(测绘技能大赛、 | | | 1 4 站 车 测 从 + 北 Lo ソ | 测绘科技论文大赛)等。 | | 6.工程与社会:能 | 6.1 熟悉测绘专业相关 技术标准、法律法规及 | 思想道德修养与法律基础、土木工程概论、数字地形测量学、遥 | | 够基于工程相关 | 管理规定,能够基于工
程相关背景知识进行合 | 感原理、大地测量学基础、卫星导航定位技术、测绘管理与法律 | | 背景知识进行合 | 理分析 | 法规、数字地形测量实习、地理信息系统原理实习、工程测量综 | |------------|----------------------------|---| | 理分析,评价测 | | 合实习、工程实践类、毕业设计等。 | | 绘工程实践和复 | | 中国近现代史纲要、马克思主义基本原理概论、毛泽东思想和中 | | 杂测绘工程问题 | 6.2 能够评价测绘工程
实践和复杂测绘工程问 | 国特色社会主义体系理论概论、军事理论、工程测量学、不动产 | | 解决方案对社 | 题解决方案对社会、健 | 国行己社会主义体宗理论概论、半事理论、工程测量字、小切) | | 会、健康、安全、 | 康、安全、法律以及文
化的影响,以及这些制 | | | 法律以及文化的 | 约因素对项目实施的影 | 与灾害预报、工程测量学、经典赏析与文化传承、哲学视野与文

 明对话、科技革命与社会发展、建筑艺术与审美教育、生态文明 | | 影响,并理解应 | 响,并理解应承担的责
任 | | | 承担的责任。 | - | 与未来城市等。 | | 7.环境和可持续 | 7.1 知晓和理解环境保护和可持续发展的理念 | 物理实验(1-2)、测绘地理信息概论、自然地理学、遥感数字图 | | 发展:能够理解 | 和内涵 | 像处理、地理国情监测、形势与政策(1-2)等。 | | 和评价针对复杂 | 7.2 能够从环境保护和 | 市场营销、自然地理学、不动产测量与管理、智慧城市导论、地 | | 测绘工程问题的 | 可持续发展的角度认知
测绘工程实践活动的可 | 理国情监测、变形监测与灾害预报、控制测量实习、不动产测量 | | 测绘工程实践对 | 持续性,以及评价测绘 | 与管理实习、复合培养类、毕业设计等。 | | 环境、社会可持 | 工程生产实践中可能对
环境及社会造成的损害 | | | 续发展的影响。 | 和隐患 | | | 8.职业规范:具有 | 8.1 具有人文社会科学 | 思想道德修养与法律基础、中国近现代史纲要、马克思主义基本 | | 人文社会科学素 | 素养,树立正确的世界 | 原理概论、毛泽东思想和中国特色社会主义体系理论概论、军事 | | 养、社会责任感, | 观、人生观和价值观 | 理论、体育(1-4)、军训等。 | | 能够在测绘工程 | 8.2 理解诚实公正、诚 | 思想道德修养与法律基础、中国近现代史纲要、毛泽东思想和中 | | 实践中理解并遵 | 信守则的测绘行业职业 | 国特色社会主义体系理论概论、大学生职业生涯与发展规划、测 | | 守测绘行业职业 | 道德和规范,并能在测
绘工程实践中自觉遵守 | 绘地理信息概论、测绘管理与法律法规、形势与政策(1-2)、数 | | 道德和规范,履 | M-1/M-1/2021 | 字地形测量实习、不动产测量与管理实习、空间信息综合实习等。 | | 行责任。 | 8.3 理解测绘工作人员
对公众的安全、健康、 | 马克思主义基本原理概论、大学生职业生涯与发展规划、测绘地 | | | 福祉、环境保护的社会 | 理信息概论、自然地理学、测绘管理与法律法规、毕业设计等。 | | | 责任,能够在测绘工程
实践中自觉履行责任 | | | 9.个人和团队:能 | 9.1 能与建筑、土木等 | 大学生职业生涯与发展规划、体育(1-4)、土木工程概论、工程 | | 够在多学科背景 | 学科的成员有效沟通,
合作共事 | 力学、城市规划概论、测量数据处理与程序设计、毕业设计等。 | | 下的团队中承担 | | 军事理论、军训、创新实践(测绘技能大赛、测绘科技论文大赛)、 | | 个体、团队成员 | 9.2 能够在团队中独立
或合作开展工作 | 数字地形测量实习、遥感原理实习、卫星导航定位实习、控制测 | | 以及责任人的角 | | 量实习、工程测量综合实习、激光雷达测量技术实习、测绘技能 | | 色。 | | 大赛实训、GIS 软件开发大赛实训、等。 | | | 9.3 能够组织、协调和 | 中国近现代史纲要、军事理论、地图学实习、地理信息系统原理 | | | 指挥团队开展工作 | 实习、空间信息综合实习、激光雷达测量技术实习、毕业设计等。 | | 10.沟通: 能够就 | 10.1 能够在撰写设计 | 地图学实习、控制测量实习、工程测量综合实习、毕业设计等。 | | 复杂测绘工程问 | 书、技术报告以及陈述 发言中,就复杂测绘工 | | | | 及百十, 肌及乐测宏上 | | | 题与测绘同行及 | 程问题与测绘同行及社 会公众进行有效沟通和 | | |--------------------------------|--------------------------|--------------------------------| | 社会公众进行有 | 交流 | | | 效沟通和交流, | 10.2 具备一定的国际 | 大学英语(1-2)、遥感原理、地理信息系统原理(双语)、空间 | | 包括撰写报告和 | 视野,了解测绘领域的 | 信息综合实习、大学英语拓展系列课程(1-8)、现代测绘技术应 | | 设计文稿、陈述 | 国际前沿发展趋势和研
究热点 | 用、GIS 基础应用技能、遥感应用前景等。 | | 发言、清晰表达 | JU NR MK | | | 或回应指令,并 | 10.3 具有跨文化交流 | 大学英语(1-2)、科技论文写作(双语)、大学英语拓展系列课 | | 具备一定的国际 | 的语言和书面表达能 | 程(1-8)等。 | | 视野,能够在跨 | 力,能够就测绘问题在 | | | 文化背景下进行 | 跨文化背景下进行沟通
和交流 | | | 沟通和交流。 | | | | 11.项目管理: 理 | 11.1 掌握工程项目中 | 土木工程概论、工程力学、市场营销、不动产测量与管理、数字 | | 解并掌握工程管 | 涉及的管理与经济决策
方法 | 地形测量实习、控制测量实习、工程测量综合实习、毕业设计等。 | | 理原理与经济决 | 11.2 了解测绘生产的 | 市场营销、测绘管理与法律法规、卫星导航定位实习、毕业设计 | | 定办 生 つ 生 が ()
 策方法, 并能在 | 成本构成,理解其中涉 | 等。 | | 東ガム, 升 肥在
 多学科环境中应 | 及的工程管理与经济决
策问题 | ऍ ° | | | 11.3 能在多学科环境 | 工程测量综合实习、不动产测量与管理实习、城市规划概论、毕 | | 用。 | 下,在设计开发的过程
中,运用工程管理与经 |
 业设计等。 | | | 济决策方法 | | | 12.终身学习: 具 | | 思想道德修养与法律基础、大学生职业生涯与发展规划、大学英 | | 有自主学习和终 | 12.1 具有自主学习和 | 语(1-2)、测绘地理信息概论、误差理论与测量平差基础、测绘 | | 身学习的意识, | 终身学习的意识 | 管理与法律法规、测绘地理信息技术前沿、大学英语拓展系列课 | | 有不断学习和适 | | 程 (1-8) 等。 | | 应发展的能力。 | | 马克思主义基本原理概论、毛泽东思想和中国特色社会主义体系 | | | 12.2 具有不断学习和 | 理论概论、测绘地理信息概论、科技论文写作(双语)、智慧城 | | | 适应发展的能力 | 市导论、测绘地理信息技术前沿、毕业设计、创新实践(测绘技 | | | | 能大赛、测绘科技论文大赛)等。 | | • | | | # 十、指导性教学计划(见附表) # 十一、主要课程逻辑关系结构图 # 2017
Undergraduate Program for Specialty in Surveying and Mapping Engineering #### **I.Specialty Name and Code** | English Name | Surveying and Mapping Engineering | | | | |---------------------|-----------------------------------|--------|-------------------------|--| | Code | 081201 Disciplines Engineering | | | | | Length of Schooling | Four years | Degree | Bachelor of Engineering | | #### II. Educational Objectives and Features #### 1.Objectives This program is to cultivate inter-disciplinary engineering talents, fully developed in morality, intelligence and physique, well equipped with mathematical science and social science, and highly skilled in basic theory, knowledge and profession of surveying and mapping engineering. The students are required to have the systematic training of scientific thinking and engineering practice, so that they are competent in design, production, R&D and management of surveying and mapping engineering, including basic state surveying and mapping, urban and rural development, land resources and urban emergency. It is practical engineering technical personnel with strong organizational management ability, innovative consciousness, continuous learning ability, international vision and urban surveying and mapping characteristics. After five years after graduation to work and study, can achieve the following goals: - (1) the knowledge of mathematics, natural science, engineering foundation and advanced theory and technology of surveying and mapping, competent for engineering reconnaissance, design, construction and management, and other professional and technical work; - (2) have good professional quality, rich engineering management experience and strong sense of responsibility, and become the technical leader or technical backbone of surveying and mapping geographic information enterprises and institutions; - (3) have the ability to continue learning and adapt to development, and can independently or jointly undertake the research work of surveying and mapping geographic information; - (4) good team awareness, international vision and communication skills, capable of taking the leading role in the team; - (5) have good ideological and moral cultivation, scientific and cultural literacy, and can assume and fulfill social responsibilities. #### 2.Features This program features integrating the teaching, research and production together with the development of high-technology, stressing the combination of theory and practice, highlighting the city surveying and mapping characteristics, and pinpointing the comprehensive ability of application of new surveying and mapping technologies. Based on the construction of Beijing and with the advantages of the civil construction disciplines of the University, this program aims to cultivate professional surveying and mapping talents for the urban and rural construction, protection of historic buildings and accurate measurement of complex structures of Beijing and the whole country. #### III. Major Disciplines Science and Technology of Surveying and Mapping #### IV. Major Courses #### 1. Basic Courses Introduction to Geomatics, Engineering Drawing and Read Drawing, C Language and Data Structure, Physical Geography, Digital Topographic Surveying, CAD Basic and Application, Fundamentals of Error Theory and Surveying Adjustment, The Principle of Geographic Information System (Bilingual), Principles of Remote Sensing, Photogrammetry Fundamental #### 2. Specialty Courses Satellite Navigation and Positioning Technology, Foundation of Geodesy, Engineering Surveying, Deformation Monitoring and Disasters Predicting, Real Estate Surveying and Management, Laser Radar Surveying Technology and Application #### V. Major Practical Training #### 1. Major experiment Experiment of Digital Topographic Surveying, experiment of Satellite Navigation and Positioning Technology, experiment of Fundamentals of Photogrammetry, experiment of GIS Principles, experiment of Geodesy, experiment of Engineering Surveying, experiment of Deformation Monitoring, experiment of Real Estate Surveying and Management, experiment of Laser Radar Surveying Technology and Application #### 2. Major Practical Training Digital Topographic Surveying Practice, Satellite Navigation and Positioning Practice, Principles of Remote Sensing Practice, Fundamentals of Photogrammetry Practice, GIS Practice, Cartography Practice, Control Surveying Practice, Comprehensive Training for Engineering Surveying, Comprehensive Training for Spatial Information, Real Estate Surveying and Management Practice, Laser Radar Surveying Practice. #### VI. Graduation Requirements In accordance with "Management Regulations for the Undergraduate Students of Beijing University of Civil Engineering and Architecture" and "Bachelor's Degree Awarding Regulations", the minimum credits required by specialty for graduate is 160, including 121 credits of theoretical courses and 39 credits of practice teaching (2 credits of compulsory innovation practice and scientific research training included). #### **VII. Proportion of Course** | Course Category | Course Type | Credits | Class Hour | Proportion | |------------------------|-------------|---------|------------|------------| | | Compulsory | 37.5 | 600 | 23.43% | | General Education | Optional | 3 | 48 | 1.88% | | Big Academic Subjects | Compulsory | 46 | 764 | 28.75% | | | Optional | 1 | 16 | 0.63% | | Professional Core | Compulsory | 17 | 272 | 10.63% | | Professional Direction | Compulsory | 6 | 96 | 3.75% | | | Optional | 10.5 | 168 | 6.56% | | Practice | Compulsory | 37 | 764 | 23.13% | | | Optional | 2 | 40 | 1.25% | | Total | | 160 | 2768 | 100% | ### **VIII.Table of Teaching Program** | Semester | Teaching | Exam | Practice | Semester | Teaching | Exam | Practice | |----------|----------|-------|--------------|----------|------------|---------------|------------| | 1 | 4-19 | 20 | 1-3 | 2 | 1-16 | 17 | 18-20 | | 3 | 1-14 | 15-16 | 17-20 | 4 | 1-14 | 15-16 | 17-20 | | 5 | 1-16 | 19-20 | 17-18 | 6 | 1-14 | 15-16 | 17-20 | | 7 | 7-15 | 16 | 1-6
17-20 | 8 | 1-16 gradu | ation project | 17 defence | #### IX. Graduate Abilities and Matrices | Graduate | Related | Course Supports | |---|---|---| | Abilities | Knowledge | | | 1.Engineering knowledge: have the ability of solving complex Survey and Mapping | 1.1 Use language tools of mathematics, natural science and engineering science to formulate surveying and mapping engineering | Introduction to Computational Thinking, C Programming Language and Data Structure, CAD Basic and Application, Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), College physics A(1-2), Physics Experiment (1-2), Linear Algebra, Introduction to Civil Engineering, Cartography, Physical geography, Computer Graphics. | | engineering issues with mathematics, natural science, engineering foundation and professional | 1.2 set up and solve mathematical models for specific surveying objects | Advanced Mathematics A(1-2), Linear Algebra, Digital Topographic Surveying, The Principle of Geographic Information System, Photogrammetry Fundamental, Deformation Monitoring and Disasters Predicting, Foundation of Geodesy, Fundamentals of Error Theory and Surveying Adjustment. | | knowledge. | 1.3 use relevant
knowledge and
mathematical models | Introduction to Computational Thinking, CAD Basic and Application, Engineering Drawing and Interpreting, Linear Algebra, Technology of Satellite navigation and | | | T | | |---|--|--| | | to deduce and analyze complex engineering problems in surveying and mapping. 1.4 Solution comparison and synthesis of complex surveying and Mapping engineering problems by using relevant knowledge and mathematical modeling methods. | positioning, The Laser Radar Surveying Technology, Computer Graphics, The Detecting and Surveying for underground pipelines in City, Engineering Surveying, Urban Spatial Information Science. C Programming Language and Data Structure, Theory of Probability and Statistics (B), Technology of 3D GIS, Close-range Photogrammetry, Digital Topographic Surveying Practice, Cartography Practice, Practical Training for Photogrammetry Fundamental, Graduation design. | | 2.Problem | 2. 1 Be able to apply the basic principles | Introduction to Computational Thinking, C Programming Language and Data Structure, Advanced Mathematics A(1-2) Theory of Probability and Statistics (R) Physics | | analysis: Be able to apply the basic principles of mathematics, natural science and | of mathematics, natural science and Engineering Science, to
identify, analyze and express. | A(1-2), Theory of Probability and Statistics (B), Physics Experiment (1-2), Linear Algebra, Introduction to Civil Engineering, C# Programming, Cartography, The Principle of Geographic Information System, Physical geography, Deformation Monitoring and Disasters Predicting, Spatial Analysis and Modeling, Practical Training for Photogrammetry Fundamental. | | Engineering Science to identify, | 2.2 correctly express complex surveying and | CAD Basic and Application, Digital Topographic
Surveying, Fundamentals of Error Theory and Surveying
Adjustment, Surveying Data Processing and Program Design | | express, and analyze the complex | mapping engineering
problems based on
relevant scientific | Practice Contest, The Laser Radar Surveying Technology,
Technology of 3D GIS, The Detecting and Surveying for
underground pipelines in City, GIS base Application | | engineering problems through | principles and mathematical | Skill, Engineering Surveying, Technology and Application of Mobile Mapping System. | | literature research | models. 2.3 recognize alternatives ways to | C Programming Language and Data Structure, Document
Retrieval of Science and Technology, Photogrammetry | | to obtain the effective | solve problems, and can seek alternative | Fundamental, Foundation of Geodesy, Engineering Surveying, GIS Practice, Practical Training for Real | | conclusion. | solutions through literature research. | Estate Surveying and Management. | | | 2.4 use the basic principles and literature research to analyze the influencing factors of the process and get effective conclusions. | College physics A(1-2), Document Retrieval of Science and Technology, Technology of Satellite navigation and positioning, Practical Training for Control Surveying, Practical Training for Engineering Surveying, Graduation design, Scientific research training. | | 3. Design/Develop | 3.1 Master the basic design/development | Introduction to Computational Thinking, CAD Basic and Application, GIS base Application Skill, Real Estate | | solutions: Be able | methods and | Surveying and Management, Introduction to Smart City, | | to design solutions | techniques of the whole cycle and | Spatial Analysis and Modeling, Engineering Surveying, Practical Training for Photogrammetry Fundamental, | | for complex | whole process of
Surveying and | Practical Training for Engineering Surveying,
Comprehensive Practice for Spatial Information. | | | T | | |---|---|--| | engineering problems. The design meets the specific needs of system, the unit (components) or process, and can embody the sense of innovation in the design process, considering the society, health, safety, law, culture and environment factors. | mapping engineering design/development, and understand various factors that affect design objectives and technical solutions. 3.2 Able to design and develop workflow and systems that meet specific needs of surveying. 3.3 Be able to demonstrate innovation awareness in the design of Surveying | C Programming Language and Data Structure, CAD Basic and Application, Principles of Remote Sensing, The Principle of Geographic Information System, Photogrammetry Fundamental, Technology of Satellite navigation and positioning, The Laser Radar Surveying Technology, Engineering Surveying, Map Design and Compilation, Cartography Practice, Practical Training for Satellite Navigation and Positioning, GIS Practice, Surveying Data Processing and Program Design Practice Contest. Introduction to Geomatics, Digital Topographic Surveying, Engineering Surveying, Technology and Application of Mobile Mapping System, Geographic Conditions Monitoring, Invocation Practice (School of | | | and mapping projects, taking into account social, health, safety, law, culture and environmental | Surveying and Mapping Skills Contest, School of Surveying and Mapping Paper Contest), Digital Topographic Surveying Practice, Practical Training for Engineering Surveying, Innovation and Entrepreneurship, Graduation design. | | 4.Research: Be able | factors. | Cartography, The Principle of Geographic Information | | to study complex engineering problems, including the design of experiments, analysis and | 4.1 use scientific principles to propose a research scheme for complex surveying and mapping engineering problems. | System, Foundation of Geodesy, The Detecting and Surveying for underground pipelines in City, Engineering Surveying, Introduction to Smart City, Geographic Conditions Monitoring, Practical Training for Control Surveying, Cartography Practice, Practical Training for Satellite Navigation and Positioning. | | interpretation of data, and get a reasonable and effective conclusion through using scientific methods and based on scientific theory. | 4.2 design, demonstrate and predict the research plan based on professional theoretical knowledge. 4.3 adopt scientific methods for data acquisition and analysis. | Introduction to Computational Thinking, Engineering Drawing and Interpreting, Principles of Remote Sensing, Photogrammetry Fundamental, Technology of Satellite navigation and positioning, Practical Training for Engineering Surveying. C# Programming, C Programming Language and Data Structure, Fundamentals of Error Theory and Surveying Adjustment, Surveying Data Processing and Programming, The Laser Radar Surveying Technology, Deformation | | Monitoring and Disasters Predicting, Engineering Surveying, Remote Sensing Digital Image Processing, Close-range Photogrammetry, Practical Training for Satellite Navigation and Positioning, Surveying Data Processing and Program Design Practice Contest, Practical Training for Control Surveying, Practical Training for Photogrammetry Fundamental, Practical Training for Photogrammetry Fundamental, Practical Training for Laser Radar Surveying Technology, Comprehensive Practice for Spatial Information, Graduation design. 5.Using modern tools:llave the shility to solve complex engineering problems by developping, selecting and using appropriate developping, selecting and using appropriate engineering tools and information technology, and mapping instruments and information technology tools, including the prediction and simulation of complex engineering problems and understanding the prediction and simulations. Monitoring and Disasters Predicting, Engineering Data Processing and Program Design Practical Training for Control Surveying Technology, Cattography, Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Laser Radar Surveying Technology, Comprehensive Practice for Spatial Information Tools:llave the shility to solve CAD Basic and Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology and mapping and Management, Introduction to Smart Training for Control Surveying, Raping and Bls, System, Advanced Technology of Surveying, Apping and GIS, System, Advanced Technology of Surveying, Practical Training for Eagleering Drawing and Management, Practical Training for Eagleering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software to complete data Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software to complete data | | | | | | | | | |
--|----------------------|----------------------|--|--|--|--|--|--|--| | Close-range Photogrammetry, Practical Training for Satellite Navigation and Positioning, Surveying Data Processing and Program Design Practice Contest, Practical Training for Control Surveying, Practical Training for Laser Radar Surveying Technology. 4.4 integrate and judge the results of experiments, and get reasonable conclusions. 4.4 integrate and judge the results of experiments and get reasonable conclusions. 4.5 Integrate and judge the results of experiments and get reasonable conclusions. 5.Using modern tools: llave the ability to solve complex engineering by developping. 5.1 Choose appropriate modern appropriate solve lendology and paper propriate modern surveying technology and information technology tools, and information and information and simulation of complex surveying and manapring engineering problems and understanding the limitations. 5.2 use modern and programmetry, Practical Training for Control Surveying, Practical Training for Laser Radar Surveying Practical Training for Laser Radar Surveying Technology, Carlographic Surveying, and Disasters Predicting and Surveying for underground pipelines in City, GIS base application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart Training for Control Surveying, Practical Training for Control Surveying, Practical Training for Real Estate Surveying and Management, Introduction to Smart Training for Control Surveying, Practical Training for Real Estate Surveying and Management, Sourveying Practical State Surveying Practical Training for Control Surveying, Practical Training for Real Estate Surveying and Management, Introduction to Smart Training for Control Surveying, Practical Training for Real Estate Surveying and Management, Introduction to Smart Training for Real Estate Surveying Trai | | | Monitoring and Disasters Predicting, Engineering | | | | | | | | Satellite Navigation and Positioning, Surveying Data Processing and Program Design Practice Contest, Practical Training for Control Surveying, Practical Training for Photogrammetry Fundamental, Practical Training for Photogrammetry Fundamental, Practical Training for Laser Radar Surveying Technology, Document Retrieval of Science and Technology, Cartography, Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Real Estate Surveying and Management, Fractical Training for Real Estate Surveying and Management, Cartography, Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Real Estate Surveying and Management, Fractical Training for Control Surveying Inchnology, Comprehensive Practice for Spatial Information, Graduation design. College English(1-2), Introduction to Computational Topographic Surveying, The Laser Radar Surveying Technology, Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in Surveying and Management, Introduction to Smart City, GIS base Application Skill, Deformation Monitoring and information technology tools, including the Easte Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Practice, Practical Training for Control Surveying Practice, Training for Control Surveying Practice, Practical Training for Laser Radar Surveying Technology, Comprehensive Practical Training for Laser Radar Surveying Technology, System, Advanced Technology of Surveying, Practice, Practical Training for Laser Radar Surveying Technology, Comprehensive Practical Training for Real Estate Surveying and Management, Training for Real Estate Surveying Practice, Practical Training for Laser Radar Surveying, Practice, Practical Training for Real Estate Surveying and Management, Training for Real Estate Surveying Application Skills Practice Practical Training for Real Estate Surveying Application, | | | Surveying, Remote Sensing Digital Image Processing, | | | | | | | | Processing and Program Design Practice Contest, Practical Training for Control Surveying, Practical Training for Photogrammetry Fundamental, Practical Training for Laser Radar Surveying Technology. Decument Retrieval of Science and Technology, Cartography, Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Real Estate Surveying and Management, Practical Training for Real Estate Surveying and Management, Practical Training for Real Estate Surveying and Management, Practical Training for Comprehensive Practice for Spatial Information, Graduation design. College English(1-2), Introduction to Computational Tobographic Surveying, The Laser Radar Surveying Technology, Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology, Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, GIS base Application of Mobile Mapping and information Simulation of Complex surveying and mapping instruments and information of complex engineering problems and understanding the prediction and simulation of complex engineering problems and understanding the limitations. 5.2 use modern surveying and Management, Introduction to Smart Training for Real Estate Surveying Advanced Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. (b), Digital Topographic Surveying, Principles of Remote | | | Close-range Photogrammetry, Practical Training for | | | | | | | | Practical Training for Control Surveying, Practical Training for Photogrammetry Fundamental, Practical Training for Photogrammetry Fundamental, Practical Training for Laser Radar Surveying Technology, Cartography, Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Comprehensive Practice for Spatial Information, Graduation design. 5.Using modern tools:Have the ability to solve complex engineering problems by developping, selectting and using appropriate technology, interest of complex surveying appropriate engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. Fractical Training for Real Estate Surveying And Management, Practical Training for Laser Radar Surveying Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Training for Control Surveying, Naping and GIS, Digital Topographic Surveying Cartography Practice, Practical Training for Eagineering Surveying, Practical Training for Eagineering Surveying and Management, Practical Training for Eagineering Surveying, Practical Training for Control Surveying and Management, Practical Training for Eagineering Surveying Practice. 5.2 use modern surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5.2 use modern surveying and Management information for Eagineering Drawing
and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | | | Satellite Navigation and Positioning、Surveying Data | | | | | | | | Training for Photogrammetry Fundamental, Practical Training for Laser Radar Surveying Technology, Document Retrieval of Science and Technology, Cartography, Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Laser Radar Surveying and Management, Practical Training for Laser Radar Surveying and Management, Practical Training for Laser Radar Surveying Technology, Comprehensive Practice for Spatial Information, Graduation design. College English(1-2), Introduction to Computational Thinking, C Programming, Language and Data Structure, CAD Basic and Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology, Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and mapping engineering problems and information technology tools, including the prediction and simulation of complex surveying and information technology tools, including the prediction and simulation of complex surveying and mapping instruments and information technology store simulation of complex surveying and mapping instruments and information technology store simulation of complex surveying and mapping instruments and information technology software 5.2 use modern surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | | | Processing and Program Design Practice Contest, | | | | | | | | Training for Laser Radar Surveying Technology. A.4 integrate and judge the results of experiments, and get reasonable conclusions. | | | Practical Training for Control Surveying, Practical | | | | | | | | Document Retrieval of Science and Technology, Cartography, Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Cartography Practice, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Cartography Practice, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Cartography Scientific Paper writing, Engineering Surveying, Spatial Analysis and Modeling, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Department of Spatial Analysis and Modeling, Practical Training for Real Estate Surveying and Data Structure, CAD Basic and Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying, Practical Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Real Estate Surveying Practice, Practical Training for Real Estate Surveying and Management, Practical Training for Real Estate Surveying Practice, Practical Training for Real Estate Surveying Practice, Practical Training for Real Estate Surveying Practice, Practical Training for Real Esta | | | Training for Photogrammetry Fundamental, Practical | | | | | | | | A.4 integrate and judge the results of experiments, and get reasonable conclusions. S.Using modern tools: Have the ability to solve complex engineering problems by developping, selectting and using appropriate actionlogy. Selectting and using appropriate modern surveying and information technology tools, including the prediction and simulation of complex engineering problems and understanding the prediction and simulation s. S.Using modern tools: Have the ability to solve complex engineering problems by developping, selecting and using appropriate modern surveying and information technology tools, including the prediction and simulation of complex engineering problems and understanding the prediction and simulation of complex engineering problems and understanding the prediction and simulations. S.Using modern tools: Have the conclusions. Call Basic and Application, C# Programming, Digital Topographic Surveying of 3D GIS, Computer Graphics, The Detecting and Surveying and Management, Introduction to Smart City, Technology and Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Practical Training for Control Surveying Practice, Practical Training for Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Real Estate | | | Training for Laser Radar Surveying Technology. | | | | | | | | 4.4 integrate and judge the results of experiments, and get reasonable conclusions. 5.Using modern tools: Have tools: Have a bility to solve complex engineering problems by a technology. 5.1 choose appropriate appropriate appropriate and information tochnology tools, including the prediction and simulation of complex engineering and information tochnology tools including the prediction and simulation of complex engineering and information tochnology tools including the problems and understanding the understanding the lateral and using a limitations. 5.2 use modern average and bata surveying surveying to the problems and information tochnology of the problems and information to appropriate and understanding the lateral lat | | | Document Retrieval of Science and Technology, | | | | | | | | Judge the results of experiments, and get reasonable conclusions. S.Using modern tools: Have the ability to solve complex engineering problems by developping, selectting and using and information tochnology tools, including the prediction and simulation of complex engineering problems and information of complex engineering and initations. Judge the results of experiments, and get reasonable reasonable reasonable. Practical Training for Real Estate Surveying and Management, reasonable and information (Graduation design. Comprehensive Practice for Spatial Information, Graduation design. Comprehensive Practice for Spatial Information, Graduation design. Complex English (1-2). Introduction to Computational Thinking. C Programming Language and Data Structure, CAD Basic and Application. C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology, Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Practical Training for Control Surveying Practice, Practical Training for Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Real Estate Surveying Technology, Software Development Practice. 5.2 use modern surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5.2 use modern surveying and Management and information technology software development Practice. 6.5 use modern surveying and Management Practice. 6.6 Use modern surveying and Management and Interpreting, Advanced (B), Digital Topographic Surveying, Principles of Remote technology software | | | Cartography, Scientific Paper writing, Engineering | | | | | | | | stusing modern tools: Have the ability to solve complex engineering appropriate engineering and information technology tools, including the prediction and simulation of complex engineering and information at simulation of complex engineering problems and understanding the problems and understanding the conclusions. Partical Training for Laser Radar Surveying Technology (Comprehensive Practice for Spatial Information), Graduation design. College English(1-2), Introduction to Computational Thinking, C Programming Language and Data Structure, CAD Basic and Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology, Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Appling and GIS, System, Advanced Technology of Surveying, Mapping and GIS, Practical Training for Control Surveying Practice, Practical Training for Real Estate Surveying and Management, Practical Training for Engineering Surveying, Practical Training for Laser Radar Surveying Technology Software Development Practice. Practical Training for Laser Radar Surveying Technology and Application, C# Programming, Digital Topographic Surveying and Management, Introduction to Smart City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting,
Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, GIS base Application, C# Production to City, GIS base Application, C# Production to City, GIS base Application S | | = | Surveying, Spatial Analysis and Modeling, Practical | | | | | | | | S.Using modern tools: Have the ability to solve complex engineering problems by developping, selectting and using appropriate technology, and instruments for complex surveying and information technology tools, including the prediction and simulation of complex engineering problems and understanding the problems and limitations. College English(1-2), Introduction to Computational Thinking, C Programming Language and Data Structure, CAD Basic and Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping and mapping problems. Software Development Practice. | | experiments, and get | Training for Real Estate Surveying and Management, | | | | | | | | S.Using modern tools: Have the ability to solve complex engineering problems by developping, selectting and using appropriate technology. Technology and instruments for complex surveying and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. College English(1-2). Introduction to Computational Thinking. C Programming Language and Data Structure. CAD Basic and Application. C# Programming. Digital Topographic Surveying, The Laser Radar Surveying Technology. Technology of 3D GIS. Computer Graphics. The Detecting and Surveying for underground pipelines in City. GIS base Application Skill. Deformation Monitoring and Disasters Predicting. Engineering Surveying. Real testate Surveying and Management. Introduction to Smart City. Technology and Application of Mobile Mapping System. Advanced Technology of Surveying, Maping and GIS. Practical Training for Control Surveying. Practical Training for Engineering Surveying Technology. Surveying and Mapping Skills Practice Contest. GIS Software Development Practice. S.2 | | | Practical Training for Laser Radar Surveying Technology、 | | | | | | | | tools: Have the ability to solve complex engineering problems by developping, selectting and using appropriate technology, resources, modern engineering and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. SUSING Modern tools ability to solve the complex engineering by tools ability to solve the ability to solve complex surveying and understanding the limitations. SUSING Modern the the ability to solve the ability to solve the ability to solve the ability to solve complex engineering by tools and information the ability to solve complex surveying and understanding the limitations. SUSING Modern the the ability to solve the ability to solve complex engineering by tools ability to solve the a | | | Comprehensive Practice for Spatial Information. | | | | | | | | tools: Have the ability to solve complex engineering problems by developping, selectting and using appropriate technology, resources, modern engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. Thinking, C Programming Language and Data Structure, CAD Basic and Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Practical Training for Control Surveying and Management, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software | | | Graduation design. | | | | | | | | ability to solve complex engineering problems by developping, selectting and using appropriate technology, resources, modern engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. CAD Basic and Application, C# Programming, Digital Topographic Surveying, The Laser Radar Surveying Technology, Technology of 3D GIS, Computer Graphics, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS, Digital Topographic Surveying, Cartography Practice, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Surveying and Management Practice Contest, GIS Software Development Practice. 5.2 use modern surveying and Management Surveying Prochical Surveying Prochical Surveying Prochical Surveying Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software | 5.Using modern | | College English(1-2)、Introduction to Computational | | | | | | | | complex engineering problems by developping, selectting and using appropriate technology, rechnology of 3D GIS. Computer Graphics. 5.1 choose appropriate modern surveying technology and instruments for complex surveying and mapping engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. 5.2 use modern surveying and mapping instruments and information technology software limitations. Topographic Surveying, The Laser Radar Surveying The Laser Radar Surveying of 3D GIS. Computer Graphics. The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS. Digital Topographic Surveying Practice. Practical Training for Control Surveying, Cartography Practice. Practical Training for Laser Radar Surveying and Management, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5.2 use modern surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software | tools: Have the | | Thinking, C Programming Language and Data Structure, | | | | | | | | problems by developping, selectting and using appropriate technology, rechnology of 3D GIS, Computer Graphics, and propriate technology, resources, modern engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS, Digital Topographic Surveying Practice, Practical Training for Control Surveying, Cartography Practice, Practical Training for Real Estate Surveying and Management, The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Application of Mobile Mapping System, Advanced Technology of Surveying, Cartography Practice, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Training for Real Estate Surveying and Management, Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | ability to solve | | CAD Basic and Application, C# Programming, Digital | | | | | | | | developping, selectting and using appropriate surveying technology, and instruments for complex surveying and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. The Detecting and Surveying for underground pipelines in City, GIS base Application Skill, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS, Digital Topographic Surveying Practice, Practical Training for Control Surveying, Cartography Practice, Practical Training for Engineering Surveying and Management, Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice.
Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software (B), Digital Topographic Surveying, Principles of Remote | complex engineering | | Topographic Surveying, The Laser Radar Surveying | | | | | | | | selectting and using appropriate appropriate modern surveying technology, resources, modern engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. 5.1 choose appropriate modern surveying appropriate modern surveying and mapping technology and instruments for complex surveying and mapping engineering problems. 5.1 choose appropriate modern surveying and Disasters Predicting, Engineering Surveying, Real Estate Surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS, Digital Topographic Surveying Practice. Training for Control Surveying Cartography Practice. Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software (B), Digital Topographic Surveying, Principles of Remote | problems by | | Technology、Technology of 3D GIS、Computer Graphics、 | | | | | | | | appropriate surveying technology, resources, modern engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. Appropriate modern surveying appropriate modern surveying technology and instruments for complex surveying and mapping engineering problems. Estate Surveying and Management. Introduction to Smart City. Technology and Application of Mobile Mapping System. Advanced Technology of Surveying, Maping and GIS. | developping, | | The Detecting and Surveying for underground pipelines in | | | | | | | | appropriate technology, resources, modern engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and ind imitations. surveying technology and instruments for complex surveying and mapping engineering problems. surveying and Management, Introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS, Digital Topographic Surveying Practice, Practical Training for Control Surveying, Cartography Practice, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | selectting and using | | City、GIS base Application Skill、Deformation Monitoring | | | | | | | | instruments for complex surveying and management, introduction to Smart complex surveying and mapping engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. Instruments for complex surveying and management, introduction to Smart City, Technology and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS, Digital Topographic Surveying Practice, Practical Training for Control Surveying, Cartography Practice, Practical Training for Real Estate Surveying and Management, Thiroduction to Smart City, Technology and Application of Mobile Mapping and GIS, Digital Topographic Surveying, Maping and GIS, Practical Training for Control Surveying, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Thiroduction to Smart City, Technology and Application of Mobile Mapping and GIS, Digital Topographic Surveying, Maping and GIS, Practical Training for Control Surveying, Practical Training for Engineering Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5. 2 use modern surveying and mapping instruments and information technology software Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | appropriate | | and Disasters Predicting, Engineering Surveying, Real | | | | | | | | resources, modern engineering tools and information technology tools, including the prediction and simulation of complex engineering problems and understanding the limitations. Complex surveying and Application of Mobile Mapping System, Advanced Technology of Surveying, Maping and GIS, Digital Topographic Surveying Practice, Practical Training for Control Surveying, Cartography Practice, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5.2 use modern surveying and Mapping Skills Practice. 5.2 use modern surveying and mapping instruments and information technology software (B), Digital Topographic Surveying, Principles of Remote | technology, | | Estate Surveying and Management, Introduction to Smart | | | | | | | | engineering cools and information problems. Digital Topographic Surveying Practice, Practical Training for Control Surveying, Maping and GIS, Digital Topographic Surveying Practice, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software (B), Digital Topographic Surveying, Principles of Remote | resources, modern | | City、Technology and Application of Mobile Mapping | | | | | | | | and information problems. Digital Topographic Surveying Practice, Practical Training for Control Surveying, Cartography Practice, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5.2 use modern surveying and mapping instruments and information technology software Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | engineering tools | | System、Advanced Technology of Surveying, Maping and GIS、 | | | | | | | | prediction and simulation of complex engineering of the problems and understanding the limitations. Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics and information technology software (B), Digital Topographic Surveying, Principles of Remote | and information | | Digital Topographic Surveying Practice, Practical | | | | | | | | prediction and simulation of Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. Software Development Practice. Engineering Drawing and Interpreting, Advanced mapping instruments and information technology software (B), Digital Topographic Surveying, Principles of Remote | technology tools, | | Training for Control Surveying, Cartography Practice, | | | | | | | | simulation of Complex engineering Surveying and Mapping Skills Practice Contest, GIS problems and Software Development Practice. Understanding the limitations. 5.2 use modern surveying and mapping instruments and information technology software Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | including the | | Practical Training for Engineering Surveying, Practical | | | | | | | | complex engineering problems and Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5.2 use modern surveying and mapping instruments and information technology software Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | prediction and | | Training for Real Estate Surveying and Management, | | | | | | | | problems and Software Development Practice. understanding the limitations. 5.2 use modern surveying and mapping instruments and information technology software Software Development Practice. Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | simulation of | | Practical Training for Laser Radar Surveying Technology、 | | | | | | | | understanding the surveying and limitations. 5.2 use modern surveying and mapping instruments and information technology software Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | complex engineering | | Surveying and Mapping Skills Practice Contest、GIS | | | | | | | | limitations. surveying and mapping instruments and information technology software surveying and mapping instruments and information
technology software Engineering Drawing and Interpreting, Advanced Mathematics A(1-2), Theory of Probability and Statistics (B), Digital Topographic Surveying, Principles of Remote | problems and | | Software Development Practice. | | | | | | | | limitations. mapping instruments and information technology software mapping instruments (B), Digital Topographic Surveying, Principles of Remote | understanding the | | Engineering Drawing and Interpreting、Advanced | | | | | | | | technology software (b), Digital Topographic Surveying, Frinciples of Remote | limitations. | | Mathematics A(1-2), Theory of Probability and Statistics | | | | | | | | | | | (B)、Digital Topographic Surveying、Principles of Remote | | | | | | | | - | | | Sensing、Cartography、Photogrammetry Fundamental、 | | | | | | | acquisition, data processing and accuracy analysis. Beformation and Survey Deformation Estate State S Foundation of Geodesy, Technology of Satellite navigation and positioning, Fundamentals of Error Theory and Surveying Adjustment, Engineering Surveying, Deformation Monitoring and Disasters Predicting, Real Estate Surveying and Management, Remote Sensing Digital Image Processing, Close-range Photogrammetry, Digital Topographic Surveying Practice, Practical Training for Control Surveying, Practical Training for Satellite Navigation and Positioning, GIS Practice, Practical Training for Control Surveying, Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Practical Training for Laser Radar Surveying Technology、Comprehensive Practice for Spatial Information, Graduation design, Surveying and Mapping Skills Practice Contest, GIS Software Development Practice. 5.3 use modern tools to predict and simulate complex surveying and mapping engineering problems and understand their limitations. Theory of Probability and Statistics (B), College physics A(1-2), Linear Algebra, Document Retrieval of Science and Technology, Fundamentals of Error Theory and Surveying Adjustment, Surveying Data Processing and Programming, Practical Training for Photogrammetry Fundamental, Graduation design, Invocation Practice (School of Surveying and Mapping Skills Contest, School of Surveying and Mapping Paper Contest). # 6. Society and engineering:Be able to conduct rational analysis bqsed on related background knowledge and evaluation of the effect of professional engineering practice and complicated engineering problem 6.1 Familiar with relevant technical standards, laws and regulations and management regulations of Surveying and mapping, and can reasonably analyze based on engineering related background knowledge. 6.2 evaluate the impact of Surveying and mapping engineering practice and complex mapping engineering solutions on Thought Morals Accomplishment and Basic Law, Introduction to Civil Engineering, Digital Topographic Surveying, Principles of Remote Sensing, Foundation of Geodesy, Technology of Satellite navigation and positioning, Surveying Management and Laws, Digital Topographic Surveying Practice, GIS Practice, Practical Training for Engineering Surveying, Engineering practice class, Graduation design. The Outline of the Modern Chinese History, The Generality of Basic Principle of Marxism, Introduction to Mao Zedong Thoughts and Theoretical System of the Chinese characteristic socialism, Military Theory, Engineering Surveying, Real Estate Surveying and Management, solutions on society, health, and safety, law and culture based engineering-related knowledge background, and understand the responsibilities. 7. Environment and sustainable development:Be society, health. safety, law and culture, as well as the impact of these constraints on the implementation of the project, and understanding the responsibilities should that be undertaken. Surveying Management and Laws, Urban Spatial Information Science, Deformation Monitoring and Disasters Predicting, Engineering Surveying, Classical appreciation and cultural inheritance, The philosophical perspective and the dialogue of civilization, Scientific and technological revolution and social development, Architectural art and aesthetic education, Ecological civilization and future cities. able to understand and evaluate the impact of engineering practice on environmental and social sustainable development of complex engineering problems. - 7.1 Be aware and understand the concept and connotation of environmental protection and sustainable development. - 7.2 recognize the sustainability of Surveying and mapping engineering practice from the perspective of environmental protection and sustainable development, and to evaluate the potential damage and hidden danger to environment and society in the production practice of Surveying and mapping. Physics Experiment(1-2), Introduction to Geomatics, Physical geography, Remote Sensing Digital Image Processing, Geographic Conditions Monitoring, Situation and Policy(1-2). Marketing Management, Physical geography, Real Estate Surveying and Management, Introduction to Smart City, Geographic Conditions Monitoring, Deformation Monitoring and Disasters Predicting, Practical Training for Control Surveying, Practical Training for Real Estate Surveying and Management, Compound culture class, Graduation design. #### 8.Occupational norms:Equip with the quality of humanistic social sciences, sense of social responsibility, understand and follow professional ethics and criteria - 8.1 Have the humanities and social science literacy; establish the correct world outlook, outlook on life and values. - 8.2 Understand the professional ethics and norms of the surveying and mapping industry in an honest, fair and honest code, and Thought Morals Accomplishment and Basic Law. The Outline of the Modern Chinese History. The Generality of Basic Principle of Marxism. Introduction to Mao Zedong Thoughts and Theoretical System of the Chinese characteristic socialism. Military Theory. Physical Education (1-4). Military Training. Thought Morals Accomplishment and Basic Law, The Outline of the Modern Chinese History, Introduction to Mao Zedong Thoughts and Theoretical System of the Chinese characteristic socialism, College Student Occupation | in engineering, be | observe them in the practice of | Career and Development Planning, Introduction to | | | | | | | | |----------------------|-----------------------------------|---|--|--|--|--|--|--|--| | conscientious in the | Surveying and | Geomatics, Surveying Management and Laws, Situation and | | | | | | | | | performance of | mapping. | Policy(1-2), Digital Topographic Surveying Practice, | | | | | | | | | one's duties. | | Practical Training for Real Estate Surveying and Management, Comprehensive Practice for Spatial | Information. | | | | | | | | | | 8.3 Understand the | The Generality of Basic Principle of Marxism, College | | | | | | | | | | social
responsibility of | Student Occupation Career and Development Planning, | | | | | | | | | | Surveying and | Introduction to Geomatics、Physical geography、Surveying | | | | | | | | | | mapping staff for public safety, | Management and Laws, Graduation design. | | | | | | | | | | health, welfare and | | | | | | | | | | | environmental protection, and | | | | | | | | | | | conscientiously | | | | | | | | | | | fulfill their | | | | | | | | | | | responsibilities in surveying and | | | | | | | | | | | mapping engineering | | | | | | | | | | | practice. 9.1 Able to | | | | | | | | | | 9.Individuals and | effectively | College Student Occupation Career and Development | | | | | | | | | teams:Be able to | communicate with | Planning, Physical Education (1-4), Introduction to Civil | | | | | | | | | play an important | members of architecture, civil | Engineering, Engineering Mechanics, Conspectus of Urban | | | | | | | | | role of individual, | engineering and | Planning, Surveying Data Processing and Programming, | | | | | | | | | team member and | other disciplines. | Graduation design. | | | | | | | | | person in charge in | | Military Theory, Military Training, Invocation | | | | | | | | | the team of | | Practice(School of Surveying and Mapping Skills Contest, | | | | | | | | | multi-subject | | School of Surveying and Mapping Paper Contest), Digital | | | | | | | | | background. | 9.2 work | Topographic Surveying Practice, Practical Training for | | | | | | | | | | independently or collaborate work | Control Surveying, Practical Training for Satellite | | | | | | | | | | with others in a | Navigation and Positioning, Practical Training for | | | | | | | | | | team. | Control Surveying, Practical Training for Engineering | | | | | | | | | | | Surveying, Practical Training for Laser Radar Surveying | | | | | | | | | | | Technology, Surveying and Mapping Skills Practice | | | | | | | | | | | Contest、GIS Software Development Practice. | | | | | | | | | | | The Outline of the Modern Chinese History, Military | | | | | | | | | | 9.3 organize, coordinate and | Theory、Cartography Practice、GIS Practice、Comprehensive | | | | | | | | | | command the team to | Practice for Spatial Information, Practical Training for | | | | | | | | | | carry out the work. | Laser Radar Surveying Technology, Graduation design. | 10 1 41 1 | | |----------------------|---|--| | 10. | 10.1 Able to effectively | Cartography Practice, Practical Training for Control | | Communication: | communicate and | Surveying, Practical Training for Engineering Surveying, | | Be able to | communicate with the | Graduation design. | | communicate | surveying and mapping colleagues | | | effectively with | and the public in | | | industry peers and | writing design
books, technical | | | social public in | reports and | | |
complex surveying | presentations. 10.2 Have an | | | and mapping | international | College English(1-2), Principles of Remote Sensing, The | | engineering, | perspective and understand the | Principle of Geographic Information System, | | including writing | international trend | Comprehensive Practice for Spatial Information, College | | | and research | English extension series (1-8), Application of Modern | | reports and design | hotspots in the field of Surveying | Surveying and Mapping Technology, GIS base Application | | papers, | and mapping. | Skill, Remote Sensing Applicantion Prospect. | | presentations, | | College English(1-2), Scientific Paper writing, College | | expressing oneself | | English extension series(1-8). | | and responsing | | | | instruction | 10.3 Have the | | | clearly. Have | ability of cross | | | international | cultural communicating and | | | perspective and the | paper work Can | | | ability of | communicate in cross culture background | | | communicating | in surveying and | | | between or among | mapping issues. | | | interlocutors of | | | | different cultural | | | | background. | | | | 11.Project | 11.1 Master the | Introduction to Civil Engineering, Engineering | | management: | management and | Mechanics, Marketing Management, Real Estate Surveying | | Understand and | economic
decision-making | and Management、Digital Topographic Surveying Practice、 | | master the method of | methods involved in | Practical Training for Control Surveying, Practical | | development and | the project. | Training for Engineering Surveying, Graduation design. | | management for | 11.2 Understand the | Marketing Management, Surveying Management and Laws, | | economic decision | cost structure of
Surveying and | Practical Training for Satellite Navigation and | | method and | Surveying and mapping production | Positioning, Graduation design. | | application in multi | and understand the | 1001 (1001 III) Oldudation design. | | | problems involved in engineering | | | subject | management and | | | environment. | economic | | | | decision-making. 11.3 apply engineering management and economic decision making in the process of design and development in a multidisciplinary | Practical Training for Engineering Surveying, Practical Training for Real Estate Surveying and Management, Conspectus of Urban Planning, Graduation design. | | | | | | | |---|--|--|--|--|--|--|--|--| | 12 Lifelong | environment. | Thought Manala Assamplishment and Davis Law Callana | | | | | | | | learning: Have the awareness of autonomous learning and lifelong learning ability to learn, | 12.1 The consciousness of autonomous learning and lifelong learning. | Thought Morals Accomplishment and Basic Law, College Student Occupation Career and Development Planning, College English(1-2), Introduction to Geomatics, Fundamentals of Error Theory and Surveying Adjustment, Surveying Management and Laws, Advanced Technology of Surveying, Maping and GIS, College English extension series(1-8). | | | | | | | | and adapt to the development. | 12.2 Have the ability of eternal learning and adapting development. | The Generality of Basic Principle of Marxism. Introduction to Mao Zedong Thoughts and Theoretical System of the Chinese characteristic socialism. Introduction to Geomatics. Scientific Paper writing. Introduction to Smart City. Advanced Technology of Surveying, Maping and GIS. Graduation design. Invocation Practice (School of Surveying and Mapping Skills Contest.) School of Surveying and Mapping Paper Contest). | | | | | | | # X.Table of Teaching Arrangement (appendix table) 表 1 测绘工程专业指导性教学计划 | 课程类别 | 课程属性 | 课程名称 | 学分 | 总学时 | 讲课学时 | 实验学时 | 上机学时 | 课外学时 | 延续教学 | 开课
学期 | | |------|------|---|---------|------|------|------|------|-------|------|----------|----------| | | | 思想道德修养与法律基础
Thought Morals Accomplishment and Basic
Law | 3 | 48 | 32 | | | 16 | | 1 | 马克思主义学院 | | | | 中国近现代史纲要
The Outline of the Modern Chinese History | 2 | 32 | 24 | | | 8 | | 2 | 马克思主义学院 | | | | 马克思主义基本原理概论★
The Generality of Basic Principle of
Marxism | 3 | 48 | 32 | | | 16 | | 5 | 马克思主义学院 | | | | 毛泽东思想和中国特色社会主义体系理论概
论★
Introduction to Mao Zedong Thoughts and
Theoretical System of the Chinese
characteristic socialism | | 96 | 48 | | | 48 | | 6 | 马克思主义学院 | | | 修 | 形势与政策(1-2)
Situation and Policy(1-2) | 1 | 32 | 32 | | | | | 1, 3 | 马克思主义学院 | | | | 大学生职业生涯与发展规划
College Student Occupation Career and
Development Planning | 1 | 16 | 16 | | | | | 1 | 学工部 | | 通 | | 大学英语(1-2) ★
College English(1-2) | 6 | 128 | 96 | | | | 32 | 1, 2 | 文法学院 | | 地 | | 大学英语拓展系列课程(1-4) | 2 | 32 | 32 | | | | | 3 | 文法学院 | | 识 | | 大学英语拓展系列课程(5-8) | 2 | 32 | 32 | | | | | 4 | 文法学院 | | 教 | | 体育(1-4)
Physical Education(1-4) | 4 | 120 | 120 | | | | | 1-4 | 体育部 | | 育课 | | 计算思维导论
Introduction to Computational Thinking | 1.5 | 56 | 24 | | | 32 | | 1 | 电信学院 | | 0,10 | | 小 计 | 29.5 | 640 | 488 | | | 120 | 32 | | | | | | 经典赏析与文化传承 | 2 | 32 | | | | | | 1-8 | 各院部 | | | | 哲学视野与文明对话 | 2 | 32 | | | | | | 1-8 | 各院部 | | | 核 | 科技革命与社会发展 | 2 | 32 | | | | | | 1-8 | 各院部 | | | 小 | 建筑艺术与审美教育 | 2 | 32 | | | | | | 1-8 | 各院部 | | | | 生态文明与未来城市 | 2 | 32 | | | | | | 1-8 | 各院部 | | | | 至少修读 4 类合; | 十8 学 | 2分, | 每类 | 至少何 | 多读 2 | 学分 | | | | | | | 创新创业类 | | | 1 | -8 学 | 期任達 | 先 | | | 各院部 | | | 选 | 工程实践类 | | | 各院部 | | | | | | | | | 修 | 复合培养类 | 各院部 | | | | | | | | | | | | 跨类值 | 壬选至 | 三少 3 | 学分 | | | | _ | | | | | | 通识教育课合计至少修读 40.5 学 | 分, | 其中: | 通识教 | 教育必 | ∜修 2 | 9.5 学 | 2分, | 通识 | 教育核心8学分, | | | | 通识者 | | E选 3 | 学分 | | | | | | | | 课程类别 | 课程属性 | 课程名称 | 学分 | 总学时 | 讲课学时 | 实验学时 | 上机学时 | 课外学时 | | 开课
学期 | 教学单位 | |------|------|--|----|-----|------|------|------|------|----|----------|---------| | | | 高等数学 A (1) ★ 或 B、C
Advanced Mathematics A(1) | 5 | 80 | 80 | | | | 16 | 1 | 理学院 | | | | 高等数学 A (2) ★ 或 B、C
Advanced Mathematics A(2) | 5 | 80 | 80 | | | | | 2 | 理学院 | | | | 线性代数
Linear Algebra | 2 | 32 | 32 | | | | 8 | 2 | 理学院 | | | | 概率与数理统计 B
Theory of Probability and Statistics
(B) | 3 | 44 | 44 | | | | 4 | 3 | 理学院 | | | | 普通物理 A (1) ★ College physics A(1) | 3 | 52 | 52 | | | 4 | | 2 | 理学院 | | | | 普通物理 A (2) ★ College physics A(2) | 3 | 52 | 52 | | | 4 | | 3 | 理学院 | | | | 物理实验(1-2)
Physics Experiment(1-2) | 2 | 60 | | 60 | | | | 3, 4 | 理学院 | | | | 工程制图与识图 Engineering Drawing
and Interpreting | 3 | 44 | 44 | | | | 4 | 2 | 理学院 | | 大 | 必 | C 语言与数据结构 ★ C Programming
Language and Data Structure | 3 | 48 | 32 | 16 | | | | 1 | 地理信息科学系 | | 类 | | 自然地理学 Physical geography | 2 | 32 | 32 | | | | | 1 | 地理信息科学系 | | 基 | 修 | 测绘地理信息概论 Introduction to
Geomatics | 1 | 16 | 16 | | | | | 1 | 测绘学院 | | ± | | CAD 基础与应用 CAD Basic and Application | 2 | 32 | 16 | 16 | | | | 1 | 测绘工程系 | | 础 | | 数字地形测量学★ Digital Topographic
Surveying | 4 | 64 | 52 | 12 | | | | 2 | 测绘工程系 | | 课 | | 地图学 Cartography | 3 | 48 | 40 | 8 | | | | 3 | 地理信息科学系 | | | | 地理信息系统原理(双语)★ The
Principle of Geographic Information | 3 | 48 | 40 | 8 | | | | 3 | 地理信息科学系 | | | | System | | | | | | | | | | | | | 遥感原理★ Principles of Remote
Sensing | 2 | 32 | 32 | | | | | 3 | 遥感工程系 | | | | 小 计 | 46 | 764 | 644 | 120 | | 8 | 32 | | | | | | 现代测绘技术应用 | _ | | | | | | | | | | | 选 | Application of Modern Surveying and | 1 | 16 | 8 | 8 | | | | 2 | 测绘工程系 | | | | Mapping Technology | | | | | | | | | | | | 修 | GIS 基础应用技能 GIS base Application
Skill | 1 | 16 | 8 | 8 | | | | 2 | 地理信息科学系 | | 课程类别 | 课程属性 | 课程名称 | 学分 | 总学时 | 讲课学时 | 实验学时 | 上机学时 | 课外学时 | 延续教学 | 开课
学期 | 教学单位 | |-------|------|---|-----|-----|------|------|------|-------|------|----------|---------| | | | 遥感应用前景 Remote Sensing
Applicantion Prospect | 1 | 16 | 8 | 8 | | | | 3 | 遥感工程系 | | | | 小 计 | 3 | 48 | 48 | | | | | | | | | | 大类学科基础课合计 47 | 学分 | ,必仅 | 修 46 | 学分 | ,任边 | 先 1 号 | 学分 | | | | | | 误差理论与测量平差基础 ★Fundamentals | | | | | | | | | | | | | of Error Theory and Surveying | 3 | 48 | 48 | | | | | 4 | 测绘工程系 | | - | | Adjustment
大地测量学基础★ Foundation of Geodesy | 4 | 64 | 56 | 8 | | | | 4 | 测绘工程系 | | 专业 | 必 | 卫星导航定位技术★ Technology of | 4 | 04 | 30 | 0 | | | | 4 | 例坛工往东 | | 业 核 | | E 生 子 別 た 位 1文 木 ★ Technology of Satellite navigation and positioning | 3 | 48 | 44 | 4 | | | | 5 | 测绘工程系 | | 心 | 修 | 摄影测量基础★ Photogrammetry | | | | | | | | | W 11 7 | | 课 | | Fundamental | 3 | 48 | 40 | 8 | | | | 5 | 遥感工程系 | | | | 工程测量学★ Engineering Surveying | 4 | 64 | 52 | 12 | | | | 6 | 测绘工程系 | | | | 小计 | 17 | 272 | 240 | 32 | | | | | | | | | 专业核心 | 课合 | 计必何 | 多17 | 学分 | 1 | 1 | , | | | | | | 变形监测与灾害预报 Deformation
Monitoring and Disasters Predicting | 2 | 32 | 24 | 8 | | | | 5 | 测绘工程系 | | | 必 | 不动产测量与管理 Real Estate Surveying
and Management | 2 | 32 | 28 | 4 | | | | 7 | 测绘工程系 | | 专 | 修 | 激光雷达测量技术与应用 The Laser Radar
Surveying Technology | 2 | 32 | 24 | 8 | | | | 7 | 测绘工程系 | | 业 | | 小 计 | 6 | 96 | 76 | 20 | | | | | | | | | C#程序设计 C# Programming | 2 | 32 | 16 | 16 | | | | 4 | 地理信息科学系 | | 方 | | 地图设计与编绘 Map Design and
Compilation | 2 | 32 | 16 | 16 | | | | 4 | 地理信息科学系 | | 向 | | 计算机图形学 Computer Graphics (限选) | 1.5 | 24 | 16 | 8 | | | | 5 | 地理信息科学系 | | | 选 | 测量数据处理与程序设计
Surveying Data | | | | 10 | | | | | | | 课 | 仮 | Processing and Programming | 2 | 32 | 16 | 16 | | | | 5 | 测绘工程系 | | | 修 | 遥感数字图像处理 Remote Sensing
Digital Image Processing | 2 | 32 | 24 | 8 | | | | 5 | 遥感工程系 | | | | 科技文献检索 Document Retrieval of
Science and Technology | 1 | 24 | 16 | | | 8 | | 5 | 图书馆 | | 程类别 | 课程属性 | 课程名称 | 学分 | 总学时 | 讲课学时 | 实验学时 | 上机学时 | 课外学时 | 延续教学 | 开课
学期 | 教学单位 | |-----|------|--|-------|-----|------|------|------|------|------|----------|---------| | | | 空间分析与建模 Spatial Analysis and
Modeling | 2 | 32 | 24 | 8 | | | | 5 | 地理信息科学系 | | | | 工程力学 Engineering Mechanics (限选) | 2 | 32 | 32 | | | | | 5 | 理学院 | | | | 土木工程概论 Introduction to Civil
Engineering(限选) | 2 | 32 | 32 | | | | | 5 | 土木学院 | | | | 近景摄影测量 Close-range
Photogrammetry | 2 | 32 | 26 | 6 | | | | 6 | 遥感工程系 | | | | 三维地理信息技术 Technology of 3D GIS | 2 | 32 | 16 | 16 | | | | 6 | 地理信息科学系 | | | | 智慧城市导论 Introduction to Smart
City | 1 | 16 | 16 | | | | | 6 | 地理信息科学系 | | | | 科技论文写作(双语)Scientific Paper
writing | 1 | 16 | 16 | | | | | 6 | 测绘工程系 | | | | 测绘管理与法律法规 Surveying
Management and Laws (限选) | 1.5 | 24 | 24 | | | | | 6 | 测绘工程系 | | | | 城市空间信息学 Urban Spatial
Information Science | 2 | 32 | 24 | 8 | | | | 7 | 地理信息科学系 | | | | 城市地下管线测量 The Detecting and
Surveying for underground pipelines in
City | 1 | 16 | 10 | 6 | | | | 7 | 测绘工程系 | | | | 移动道路测量技术及应用 Technology and
Application of Mobile Mapping System | 1 | 16 | 8 | 8 | | | | 7 | 地理信息科学系 | | | | 地理国情监测 Geographic Conditions
Monitoring | 1.5 | 24 | 16 | 8 | | | | 7 | 地理信息科学系 | | | | 测绘地理信息技术前沿 Advanced
Technology of Surveying, Maping and GIS | 1 | 16 | 16 | | | | | 7 | 测绘学院 | | | | 城市规划概论 Conspectus of Urban
Planning | 1.5 | 24 | 20 | 4 | | | | 7 | 建筑学院 | | | | 市场营销 Marketing Management | 1.5 | 24 | 24 | | | | | 7 | 经管学院 | | | | 小 计 | 33. 5 | 544 | 408 | 128 | | 8 | | | | # 表 2 测绘工程专业指导性教学计划(实践环节) | 课程属性 | | 课程名称 | 学
分 | 折合学时 | 实验实践 | 上机 | 开课
学期 | 开设
周次 | 教学单位 | |------|---|---|--------|----------|----------|----|----------|----------|---------| | | 军事理论
Military Theory
军训 | | | 32 | 20 | | 1 | 1-3 | 武装部 | | | Military Training
数字地形测量实习 Digital Topographic | | | 32
60 | 32
60 | | 2 | 18-20 | 测绘工程系 | | | Surveying Prac
地图学实习 Car | tography Practice | 2 | 40 | 40 | | 3 | 17-18 | 地理信息科学系 | | | | 理实习 GIS Practice | 2 | 40 | | 40 | 3 | 19-20 | 地理信息科学系 | | | 控制测量实习 Pi
Surveying | ractical Training for Control | 3 | 60 | 60 | | 4 | 18-20 | 测绘工程系 | | | | 遥感原理实习 Practical Training for
Principles of Remote Sensing | | | 20 | | 4 | 17 | 遥感工程系 | | | 摄影测量基础实习 | | | 20 | 20 | | 5 | 18 | 遥感工程系 | | 课内 | 卫星导航定位实习 Practical Training for
Satellite Navigation and Positioning | | 1 | 20 | 20 | | 5 | 17 | 测绘工程系 | | | 工程测量综合实习 Practical Training for
Engineering Surveying | | | 80 | 80 | | 6 | 17-20 | 测绘工程系 | | | 空间信息综合实习 Comprehensive Practice for
Spatial Information | | | 120 | 120 | | 7 | 1-6 | 测绘学院 | | | | 理实习 Practical Training for
rveying and Management | 2 | 40 | 20 | 20 | 7 | 17-18 | 测绘工程系 | | | | 术实习 Practical Training for
rveying Technology | 2 | 40 | 20 | 20 | 7 | 19-20 | 测绘工程系 | | | 毕业设计与毕业答辩 Graduation design and
defense | | | 160 | 160 | | 8 | 1-16 | 测绘工程系 | | | | 小 计 | 37 | 764 | 652 | 80 | | | | | 课 | 创新实践及科 | 测绘技能大赛实训 Surveying
and Mapping Skills Practice
Contest | 2 | 40 | 40 | | 4 | | 测绘工程系 | | 外 | 研训练 | 学院测绘技能大赛 School of
Surveying and Mapping Skills
Contest | 1 | 20 | 20 | | 4 | | 测绘学院 | | 测量数据处理与程序设计大赛实训 Surveying Data Processing
and Program Design Practice
Contest | | 20 | 20 | | 5 | | 测绘工程系 | | | |---|---|-----|-----|--|---|--|---------|--|--| | 全国论文大赛 Mostrule
Cup-National Paper Contest | 1 | 20 | 20 | | | | 测绘学院 | | | | GIS 软件开发大赛实训 GIS
Software Development Practice | 1 | 20 | 20 | | | | 地理信息科学系 | | | | 科研训练 Scientific research
training | 1 | 20 | 20 | | | | 测绘工程系 | | | | 小 计 | 7 | 140 | 140 | | | | | | | | 实践环节合计 39 学分,课内必修 37 学分,课外(创新实践及科研训练)必修 2 学分 | | | | | | | | | |